Prediction modelling of inpatient neonatal mortality in high-mortality settings.

Show simple item record

dc.contributor.author Aluvaala, J
dc.contributor.author Collins, G
dc.contributor.author Maina, B
dc.contributor.author Mutinda, C
dc.contributor.author Waiyego, M
dc.contributor.author Berkley, JA
dc.contributor.author English, M
dc.date.accessioned 2024-07-17T08:01:21Z
dc.date.available 2024-07-17T08:01:21Z
dc.date.issued 2020-10
dc.identifier.uri https://doi.org/10.1136%2Farchdischild-2020-319217
dc.identifier.uri http://repository.kemri.go.ke:8080/xmlui/handle/123456789/705
dc.description.abstract Objective: Prognostic models aid clinical decision making and evaluation of hospital performance. Existing neonatal prognostic models typically use physiological measures that are often not available, such as pulse oximetry values, in routine practice in lowresource settings. We aimed to develop and validate two novel models to predict all cause in-hospital mortality following neonatal unit admission in a low-resource, high-mortality setting. Study design and setting: We used basic, routine clinical data recorded by duty clinicians at the time of admission to derive (n=5427) and validate (n=1627) two novel models to predict in-hospital mortality. The Neonatal Essential Treatment Score (NETS) included treatments prescribed at the time of admission while the Score for Essential Neonatal Symptoms and Signs (SENSS) used basic clinical signs. Logistic regression was used, and performance was evaluated using discrimination and calibration. Results: At derivation, c-statistic (discrimination) for NETS was 0.92 (95% CI 0.90 to 0.93) and that for SENSS was 0.91 (95% CI 0.89 to 0.93). At external (temporal) validation, NETS had a c-statistic of 0.89 (95% CI 0.86 to 0.92) and SENSS 0.89 (95% CI 0.84 to 0.93). The calibration intercept for NETS was -0.72 (95% CI -0.96 to -0.49) and that for SENSS was -0.33 (95% CI -0.56 to -0.11). Conclusion: Using routine neonatal data in a low-resource setting, we found that it is possible to predict in-hospital mortality using either treatments or signs and symptoms. Further validation of these models may support their use in treatment decisions and for case-mix adjustment to help understand performance variation across hospitals. en_US
dc.language.iso en en_US
dc.publisher BMJ Open en_US
dc.title Prediction modelling of inpatient neonatal mortality in high-mortality settings. en_US
dc.type Article en_US


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account