dc.contributor.author |
JOSPHINE WAHOGO MBURU |
|
dc.contributor.author |
Leonard Kingwara, Magiri Ester, Nyerere Andrew |
|
dc.date.accessioned |
2025-03-26T09:35:58Z |
|
dc.date.available |
2025-03-26T09:35:58Z |
|
dc.date.issued |
2018-03 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jctube.2018.01.002 |
|
dc.identifier.uri |
http://repository.kemri.go.ke:8080/xmlui/handle/123456789/1363 |
|
dc.description.abstract |
Background: Rifampin-based therapy potentially exacerbates glycemic control among TB patients who are already at high risk of hyperglycemia. This impacts negatively to the optimal care of TB- diabetes mellitus co-affected patients. Classification and regression tree (CART), a machine-learning algorithm impervious to statistical assumptions is one of the ideal tools for clinical decision-making that can be used to identify hemoglobin A1C (HbA1C) cut-off thresholds predictive of poor TB treatment outcomes in such populations.
Methods: 340TB smear positive patients attending two peri-urban clinics were recruited and prospectively followed up for six months. Baseline HbA1C and random blood glucose (RBG) levels were determined. CART was then used to identify cut-off thresholds and rank outcome predictors at end of therapy by determining Risk ratios (RR) and 95% confidence interval (CI) of each predictor threshold. Fractal geometry law explained effect of weight, while U-shaped curve explained effect of HbA1C on these clinical outcomes.
Results: Of the 340 patients enrolled: 84%were cured, 7% completed therapy and 9% had unfavorable outcomes out of which 4% (n = 32) had microbiologic failure. Using CART HbA1C identified thresholds were >2.95%, 2.95-4.55% and >4.55%, containing 8/11 (73%), 111/114 (97%) and 189/215 (88%) of patients who experienced favorable outcomes. RR for favorable outcome in patients with weight <53.25 Kg compared to >53.25 Kg was 0.61 (95% CI, 0.45-0.88) among patients with HbA1C >4.55%. Simulation of the CART model with 13 patients data failed therapy revealed that 8/11 (73%) of patients with HbA1C <2.95%, 111/114 (97%) with HbA1C between 2.95% and 4.55% and 189/215 (88%) of patients with HbA1c >4.55% experienced microbiologic failure.
Conclusion: Using fractal geometry relationships to drug pharmacokinetics, low weight has profound influence on failure of anti-tuberculosis treatment among patients at risk for diabetes mellitus. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Journal of Clinical Tuberculosis and Other Mycobacterial Diseases |
en_US |
dc.subject |
Fractal geometry; Hollow fiber; Hyperglycemia; Tuberculosis outcomes. |
en_US |
dc.title |
Use of classification and regression tree (CART), to identify hemoglobin A1C (HbA1C) cut-off thresholds predictive of poor tuberculosis treatment outcomes and associated risk factors |
en_US |
dc.type |
Article |
en_US |