Abstract:
Background: Malaria control strategies need to respond to geographical hotspots of
transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used.
Methods: We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya,
that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and
polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and
hotspots were detected using the spatial scan statistic.
Results: Eight thousand five hundred eighty-one study participants were surveyed in 3
sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR
for all sites except by microscopy in 1 low transmission site. Pooled data analysis of
hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at
2 lower transmission settings. However, variations in degree of overlap were noted when
data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the
moderate setting, but not at the 2 low transmission settings. We observed long-term
stability of hotspots by PCR and microscopy but not RDT.
Conclusion: Malaria control programs may consider PCR testing to guide asymptomatic
malaria hotspot detection once the prevalence of infection falls.