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ABSTRACT 

Escherichia coli are normal microflora in the gut of warm-blooded animals but some 

strains are pathogenic to humans causing fatal diarrhea. Cases of antimicrobial resistance 

have been reported on E. coli isolated from different domestic and wild animals indicating 

that they are potential reservoirs for zoonotic transmission of both pathogenic and resistant 

strains of bacteria. Zoonotic transmission is favoured by anthropogenic activities. This 

study was aimed at undertaking comparative characterization of E. coli pathotypes that 

colonize the gut of captive and wild olive baboons (Papio anubis) as well as determining 

antimicrobial susceptibility profiles and presence of extended spectrum β-lactamase genes 

in all E. coli isolates. Stool samples were collected from a total of 124 olive baboons 

divided into two equal groups of captive and wild. All E. coli were isolated by culture-

based technique and characterized using polymerase chain reaction to determine of 

virulence genes associated with each pathotype. All E. coli isolates were subjected to 

susceptibility testing to fourteen antimicrobial agents followed by characterization of three 

putative resistance genes; blaCTX-M, blaTEM and blaSHV. Enteropathogenic, enterotoxigenic, 

enteroinvasive and enterohaemorrhagic E. coli were detected from both captive and wild 

baboons. However, enteropathogenic, enterotoxigenic and enteroinvasive isolates were 

detected in 29.0% of wild baboons whereas carriage of enterotoxigenic, enteropathogenic, 

enteroinvasive and enterohaemorrhagic isolates occurred in 24.2% of captive population 

(p<0.05). Wild  olive baboons appeared to harbor more enteropathogenic E. coli (22.6%) 

compared to the captive population (4.8%). On the other hand, prevalence of 

enterotoxigenic E. coli was higher among the captive olive baboons (14.5%) compared to 

the wild population (1.6%). E. coli isolates from both groups of animals were resistant to 

all antimicrobial agents except ciprofloxacin. Prevalence of ampicillin resistance was high 

in E. coli isolated from both wild (35.5%) and captive (32.3%) baboons. There was higher 

prevalence of Extended Spectrum β-Lactamases in E. coli isolated from wild (17.7%) than 

captive (14.5%) baboons (p<0.05). Carriage of blaSHV gene was higher among E. coli 

isolates from wild olive baboons (11.3%) compared to the captive population (1.6%).  

There was higher prevalence of blaCTX-M (8.1%) and blaTEM (4.8%) in captive olive 
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baboons compared to the wild population (3.2%) although these differences were not 

significant (p>0.05). This study demonstrates that the gut of both captive and wild 

populations of olive baboons is colonized by E. coli that are not only pathogenic to humans 

but also harbor extended-spectrum β-lactamases that are highly transmissible. As 

reservoirs of E. coli pathotypes and extended spectrum β-lactamases producers, baboons 

could play a potential role not only in transmission of diarrheal diseases, but also of 

antibiotic resistance genes to the environment and other animals including humans. There 

is need for further investigations to characterize additional antimicrobial resistance genes 

and their variants. Regular training of laboratory animal care staff on prevention and 

control of zoonotic transmission of diarrheagenic E. coli  is required.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study 

Diarrhoeal diseases can be caused by microbes that range from bacteria, protozoa to 

viruses and manifest as watery, secretory, bloody diarrhea or gastroenteritis (Gonzales-

Siles & Sjöling, 2016). Over 2.5 billion cases of diarrhoeal infections and 760,000 

diarrhoea associated deaths are reported annually among children aged below five years 

making it the second leading cause of morbidity and mortality after pneumonia (Liu et al., 

2012).  It has also been shown that diarrhea can lead to malnutrition, immune deficiencies 

and other long-term effects including stunting and cognitive impairment in newborn and 

toddlers thus making it a serious health problem (Gonzales-Siles & Sjöling, 2016; Niehaus 

et al., 2002). Several studies have proven that non-human primates (NHPs) are useful 

models for pre-clinical studies on numerous conditions of public health importance (Chai 

et al., 2007; Kagira et al., 2011; Valdés et al., 2013). They are also known to harbor 

zoonotic pathogens including but not limited to E. coli which are commensals in the gut 

of most warm blooded animals where they prevent colonization by other bacteria that may 

be pathogenic (Bailey & Mansfield, 2010). Some strains of E. coli are pathogenic (Clayton 

et al., 2014) causing diverse gastrointestinal diseases in humans ranging from mild 

diarrhoea to severe diseases such as haemorrhagic colitis and haemolytic uraemic 

syndrome (HUS) especially among children and the elderly ( Nguyen & Sperandio, 2012). 

The main diarrhegenic E. coli (DEC) include: enterotoxigenic E. coli (ETEC) that causes 

diarrhea by heat labile and/or heat stable toxins, enteropathogenic E. coli (EPEC) which 

is associated with profuse diarrhea, enteroinvasive E. coli (EIEC) which is associated with 

watery to bloody diarrhea as it invades the colon epithelial lining, enteroaggregative E. 

coli (EAEC) that causes persistent diarrhea in neonates and children (Jafari et al., 2012) 

while enterohaemorrhagic E coli (EHEC) particularly O157:H7 strains are associated with 

bloody diarrhea which may progress  to a serious complications, the HUS (Regua-Mangia 

et al., 2012). Diarrhea in captive primates is an age long problem in both zoo settings and 
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research colonies. One of the most pathogenic forms of E. coli in humans; Shiga toxin-

producing E. coli (STEC), which includes serotype 0157:H7. STEC are commensal 

organisms in ruminants, but are highly virulent pathogens in humans and may cause severe 

hemorrhagic colitis (Ferens & Hovde, 2011). In NHPs, it is unclear whether certain 

pathotypes exist as commensals or pathogens (Clayton et al., 2014) but their presence 

constitute a potential source of zoonotic diarrhoeal infections to humans.  

Globally, there is a growing concern over antimicrobial resistance (AMR) which has 

translated into high morbidity and mortality in both humans and animals (Wallensten et 

al., 2011). Over the past decade there has been a rapid increase in development of AMR 

by previously susceptible bacteria against different agents by varied mechanisms 

(Szmolka & Nagy, 2013). Large amounts of antibiotics used for therapy have resulted in 

the selection of pathogenic bacteria resistant to multiple drugs. Complications that arise 

from antibiotics resistant pathogens increases the severity of the infections that require 

sophisticated management including prolonged chemotherapy and even hospitalization 

(Alanis, 2005; Kiiru et al., 2012; Okeke et al., 2007).  

Management of bacterial diarrhoea is compounded by excessive use of antimicrobial 

agents that has exerted selective pressure on bacteria to acquire resistance mechanisms 

against them. Extended spectrum β-lactamases (ESBLs) can hydrolyze third generation 

cephalosporins and aztreonam but are inhibited by clavulanic acid and other β-lactamase 

inhibitors (Paterson & Bonomo, 2005). Genes encoding for ESBLs are located on 

plasmids borne by members of the family enterobacteriaceae including E. coli implying 

that there is a high risk of plasmid-mediated transfer of resistance across bacterial species  

(Isendahl et al., 2012). Such availability of additional potential source of DEC infections 

coupled with antimicrobial resistance can result in high morbidity and mortality among 

the infected human hosts (Wallensten et al., 2011). 

1.2 Problem statement 

The gut of olive baboons (P. anubis) is normally colonized by E. coli as commensals 

(Kolappaswamy et al., 2014; Lugano et al,.2018). However, some strains of this bacterium 
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are known to be serious pathogens to humans (Heidary et al., 2014) capable of causing 

zoonotic infections that range from mild diarrhoea to devastating severe infections with 

fatal complications (Bailey & Mansfield, 2010). Transmission to humans is favoured by 

their close interactions with olive baboons due to forest encroachments as its cover 

reduces, bush meat eating and sharing of water sources (Razzak et al., 2015; Rwego et al., 

2008). Urbanization has also brought these NHPs closer to humans; a move with potential 

to increase the risk of zoonoses including diarrhoeal diseases caused by E. coli arising 

from contact with fecal material from infected olive baboons (Hahn et al., 2003). This 

translates to high morbidity due to DEC infections and mortality in the high risk groups; 

children and the elderly. Management of infections caused by these bacteria is 

complicated by the rapidly developing problem of AMR with an upsurge in cases of multi 

drug resistant (MDR) E. coli being reported globally (Maragakis & Perl, 2010). Zoonotic 

transmission of antibiotic resistant bacteria including E. coli is not uncommon and the 

situation is aggravated by the fact that genes encoding this resistance can be transferred 

horizontally across microbes through mobile genetic elements and conjugative plasmids 

(Hunter et al., 2010; Iyer et al., 2013). 

1.3 Justification 

Diarrhegenic E. coli constitute infectious zoonoses that range from gastroenteritis to 

serious devastating infections to humans, with the elderly, infants and children being the 

most susceptible. Limited studies conducted on NHPs have not clearly demonstrated 

whether E. coli pathotypes are merely commensals or pathogens except in rhesus and 

cynomolgus macaques where fatal diarrhea outbreak was attributed to EIEC (Clayton et 

al., 2014; Kolappaswamy et al., 2014). Previous studies on Amboseli National park 

baboon troops only focused on antimicrobial susceptibility patterns of E. coli leaving out 

ESBLs and E. coli pathotypes (Rolland et al.,1985). Mureithi et al., (2015) focused on 

antimicrobial resistance of E. coli isolated from olive baboons that have not been 

previously exposed to antibiotics but did not characterize the pathotypes. Humans share 

habitats like water sources which increase the potential for transmission of DEC. 

Characterization DEC isolated from olive baboons will therefore be useful in contributing 



4 

 

towards prevention of the disease through understanding of additional potential 

source/reservoir of infection by virtue of human interactions with these NHPs. The 

ultimate output from this study will translate into reduction in morbidity and mortality 

among children who constitute the high risk group. 

1.4 Research questions 

1. Which pathotypes of E. coli colonize the gut of captive and wild olive baboon (Papio 

anubis)? 

2. What is the antimicrobial susceptibility profile of E. coli isolated from captive and 

wild olive baboon (Papio anubis) gut? 

3. Which extended spectrum β-lactamase-encoding genes are carried by E. coli isolated 

from captive and wild olive baboon (Papio anubis) gut? 

1.5 Objectives 

General objective 

To determine the prevalence of E. coli pathotypes and antimicrobial resistance genes 

among E. coli isolated from captive and wild olive baboon (Papio anubis) gut. 

Specific objectives 

1. To determine pathotypes of E. coli isolated from captive and wild olive baboon (Papio 

anubis) gut. 

2. To determine antimicrobial susceptibility patterns of E. coli isolated from captive and 

wild olive baboon (Papio anubis) gut. 

3. To determine presence of selected extended spectrum β-lactamase-encoding genes 

found in E. coli isolated from captive and wild olive baboon (Papio anubis) gut. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview of diarrheagenic Escherichia coli 

Diarrhegenic E. coli belong to the family enterobacteriaceae and the tribe Escherichia 

which constitute a group of motile Gram negative rods. Pathogenic E. coli colonize 

mucosal surfaces, evade host defense, multiply and cause damage to the host. These 

pathogens have unique ability to invade and adhere to intestinal mucosal sites despite 

peristalsis and microbial antagonism. Generally, all E. coli possess surface adherence 

fimbria but DEC strains form specific fimbrial antigens that enhance intestinal 

colonization as well as allowing adherence to the mucosa of small intestines (Kaper et al., 

2004). The pathogenetic mechanisms employed by DEC include: production of 

enterotoxins by ETEC and EAEC, invasion by EIEC, intimate adherence coupled with 

membrane signaling by EPEC and EHEC (Nataro & Kaper, 1998). 

2.2 Enterotoxigenic Escherichia coli infections 

Enterotoxigentic E. coli is known to cause diarrhea among children in developing 

countries and in travelers (Bölin et al., 2006). This pathotype is most common in areas of 

low income settings with inability to afford proper  hygiene and safe drinking water where 

it is estimated to cause 2.5 million  cases of infection with 700,000 children under five 

years succumbing to the infection (Kotloff et al., 2013; Lamberti et al., 2014). Infections 

by ETEC have also been associated with food borne illnesses (MacDonald et al., 2015; 

Pakalniskiene et al., 2009). The microbe expresses plasmid-borne enterotoxins; the heat 

labile toxin (LT) and/or the heat stable toxin (ST) that both mediate deregulation of 

membrane ion channels in the epithelial membrane (Fleckenstein et al., 2010). Each 

ETEC isolate typically expresses one to three colonization factor antigens (CFAs) that 

mediate adhesion to the epithelium of which CFA/I and coli surface antigens 1–6 (CS1-

CS6) are most prevalent although CS7, CS14 and CS17 are also common (Gonzales-Siles 
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& Sjöling, 2016; Madhavan & Sakellaris, 2015). Watery diarrhoea caused by ETEC poses 

a direct risk of transmission by shared toilets or through water transmission. Presence of 

ETEC in rivers, drinking water and in irrigation water has been demonstrated (Ahmed et 

al., 2013; Begum et al., 2007) and ETEC is able to adhere firmly to fresh vegetables, 

which increases risk for transmission (Shaw et al., 2011). Strains of ETEC are therefore 

present in the environment and must adapt to and survive, harsh conditions. On the other 

hand, the human gastrointestinal tract (GIT) is an equally hostile environment and any 

successful pathogen needs to be able to utilize nutrients available in the gut and also to 

sense the environment for proper expression of virulence factors (Gonzales-Siles & 

Sjöling, 2016). 

2.2.1 Diagnosis of Enterotoxigenic Escherichia coli infections 

This strain produces enterotoxins; labile toxin (LT) and/or stable toxin (ST) which form 

the basis of their identification (Fleckenstein et al., 2010). As the gold standard for 

identification of LT and ST, the rabbit ileal loop model and the infant mouse assay have 

been used respectively (Gomes et al., 2016). LT is strongly immunogenic unlike ST and 

can therefore be detected by its direct action on two tissue culture cell lines, Y1 adrenal 

cells and Chinese hamster ovarian cells where they produce physiological changes 

specific for LT and can be neutralized by antitoxin (Gomes et al., 2016). The two tissue 

culture assays have widely been used for LT recognition until the development of the 

enzyme-linked immunosorbent assay (ELISA)which was later developed to detect both 

LT and ST (Qadri et al., 2005). Other specific assays including staphylococcal 

coagglutination, passive latex agglutination, immunoprecipitation in agar, and the Biken 

test are available, though they have not been used for diagnosis (Alam & Ashraf, 2003). 

Current diagnosis is based on detection of LT and ST directly on fecal material as well as 

isolated colonies using molecular based techniques; conventional PCR and quantitative 

real-time PCR (Galbadage et al., 2009). 
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2.3 Enteropathogenic Escherichia coli infections 

Enteropathogenic E. coli were originally associated with infantile diarrhea but later it was 

observed that they were over-diagnosed. This led to their definition by their characteristic 

localized adherence pattern in tissue cultured cells which finally settled on use of specific 

virulence genes as the current basis of their identification (Ochoa & Contreras, 2011). 

Strains of EPEC possess the ability to produce attaching and effacing (A/E) lesions which 

allow the bacteria attach tightly to the host cell membrane causing a disruption of the cell 

surface leading to effacement of microvilli (Gomes et al., 2016). Intestinal cell attachment 

is mediated by an outer membrane protein called intimin, encoded by eae, which is 

currently used for the molecular diagnosis of EPEC (Hernandes et al., 2009; Trabulsi et 

al, 2002). Genetic determinants for the production of A/E lesions are located on the locus 

of enterocyte effacement (LEE), a pathogenicity island that contains the genes encoding 

intimin, a type III secretion system, a number of secreted enteroccocal surface proteins 

(Esp), and the translocated intimin receptor named Tir. Two LEE insertion sites have been 

described on the E. coli chromosome, and a third unidentified insertion site has been 

reported (Trabulsi et al., 2002). Based on molecular characterization, EPEC are classified 

into typical and atypical strains based on the presence of the plasmid E. coli adherence 

factor (EAF), bundle forming pilus (bfp) and plasmid encoded regulator(per). These two 

encode type IV bfp and a transcriptional activator per respectively. All EPEC lack genes 

to produce (stx) implying that typical strains are eae+bfpA+stx− and produce the localized 

adherence (LA) phenotype associated with the production of bfp. E. coli strains that are 

eae+bfpA−stx− are classified as atypical EPEC (aEPEC) and they display localized-like 

(LAL), diffuse adherence (DA), or aggregative adherence (AA) patterns (Ochoa & 

Contreras, 2011). The LAL pattern in aEPEC is associated with the E. coli common pilus 

and other known adhesins (Scaletsky et al., 2010).  

2.3.1 Diagnosis of Enteropathogenic Escherichia coli infections 

Diagnosis of EPEC is made based on pathogenic characteristics that distinguish it from 

other E. coli species and subdivide EPEC into “typical” and “atypical” categories. EPEC 
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is defined based on phenotypic properties, such as LA and A/E histopathology, that can 

be readily assessed using microscopy and cell culture techniques, as well as by the 

presence or absence of genetic elements such as eae, bfp, and stx (Nataro & Kaper, 1998).  

Patches of filamentous actin beneath A/E bacteria on the surface of cultured epithelial 

cells can be demonstrated by fluorescin actin staining using fluorescin isothiocyanate 

(FITC) or rhodamine-conjugate phalloidin. tEPEC can be distinguished from aEPEC and 

other DEC like DAEC and EAEC by HeLa or Hep-2 cell adherence assay (Hernandes et 

al., 2009). Due to lack of tissue culture facilities in most clinical laboratories to perform 

Hep cell adherence or fluorescence actin staining (FAS) assays detection is routinely done 

by deoxyribonucleic acid (DNA) probe hybridization or Polymerase chain reaction (PCR) 

based screens targeting eae, bfp, and EAF sequences (Croxen et al., 2013). 

2.4 Enteroinvasive Escherichia coli infections 

Enteroinvasive E. coli strains are biochemically, genetically, and pathogenetically related 

to Shigella species with a proposal to reclassify shigellae as one species in genus 

Escherichia (Lan et al., 2004; Peng et al., 2009). Strains of EIEC possess invasive plasmid 

(pINV) encoding the ability to invade host tissues infect the colonic mucosa by invading 

M cells, macrophages and epithelial cells resulting in a watery diarrhea, which in severe 

cases may be followed by the onset of scanty dysenteric stools containing blood and 

mucus (Jafari et al., 2012). A plasmid encodes insertion sequence (IS) elements and 

contains a 30 kb region enabling the bacteria to invade intestinal epithelial cells (Parsot, 

2005). Components of type three secretion system (T3SS) such as translocators, 

transcriptional activators, some effectors and chaperones are coded by this region with the 

expression of the invasive (inv) encoded genes being regulated globally by VirB and MxiE 

(Johnson & Nolan, 2009).  

2.4.1 Diagnosis of Enteroinvasive Escherichia coli infections 

Enteroinvasive E. coli causes production of stools that contain blood and pus. Invasiveness 

of EIEC in stool samples can be detected by Sereny test that demonstrates the ability of 



9 

 

the toxin to cause keratoconjuctivitis in guinea pigs (Kopecko, 1994). Culture-based 

techniques can also be used to isolate and identify EIEC. Stool is cultured onto 

differential/selective culture media then identified by inability to ferment lactose and 

utilize citrate; absence of motility, lysine decarboxylase, and urease activity; and acid but 

no gas and H2S production upon sugar fermentation (Niyogi, 2005; Panchalingam et al., 

2012). PCR can also be used to detect pathotype-specific genetic markers, like the 

invasion plasmid antigen H gene (ipaH) or the invasion-associated locus gene (ial) 

((Mohammadzadeh et al., 1989). TaqMan Array Card platform that can multiplex up to 

384 targets and has been used to detect 19 pathogens, including EIEC, is a prospective 

tool for fast and comprehensive surveillance data processing on the next level of 

multiplexing technologies (Liu et al., 2013).  

2.5 Enteroaggregative Escherichia coli infections 

This pathotype is the most recently identified DEC and is the second most common cause 

of travelers’ diarrhea after ETEC in both developed and developing countries (Jafari et 

al., 2012). Globally, EAEC have been associated with endemic and epidemic diarrhea 

besides their recent demonstration as cause of acute diarrheal illness in newborns and 

children in industrialized countries. This organism has also been associated with persistent 

watery diarrhea which may  be accompanied by mucus or blood (Croxen & Finlay, 2010; 

Harrington et al., 2006). Discovery of EAEC as well as diffusely adherent E. coli (DAEC) 

stemmed from the studies showing that EPEC adhere to HEp-2 cells in a distinctive 

pattern. Examination of a collection of DEC strains that are not of EPEC serogroups have 

shown that many of these strains also adhere to HEp-2 cells and the phenotype is different 

from that of EPEC. This pattern of adherence, which had been called “diffuse” was 

subsequently subdivided into aggregative and true diffuse adherence. Aggregative 

adhesion (AA) is the hallmark of EAEC that involve formation of a stacked brick pattern 

on HEp-2 cells besides their auto agglutination (Jafari et al., 2012). 

Pathogenesis of EAEC is characterized by colonization of intestinal mucosa, mucoid 

biofilm formation and elaboration of various enterotoxins, cytotoxins and mucosal 
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inflammation (Croxen & Finlay, 2010; Harrington et al., 2006). Colonization of intestinal 

mucosa occurs via aggregative adherence fimbriae (AAF/I-IV) encoded by a plasmid; 

pAA (Boisen et al., 2008). Adhesion of EAEC to intestinal tissue is mediated by 

antigenically heterogeneous adhesins similar to those found in ETEC but multiple carriage 

of AAFs by an EAEC strain has been rare (Aslani et al., 2011). Biogenesis of AAFs is 

regulated by transcriptional activator; AggR which is encoded by pAAs and is also the 

major EAEC virulence regulator controlling diverse virulence genes encoded by pAAs as 

well as by chromosomes (Harrington et al., 2006). Adherence of EAEC to the mucosa is 

characterized by the formation of a thick, aggregating mucus layer inside which they 

survive and this biofilm production has been attributed to the activity of fis and yafK genes 

(Sheikh et al., 2001). Movement of bacteria across cell surfaces for subsequent 

aggregation and adherence is facilitated by anti-aggregation protein (Aap) or dispersin 

which is highly immunogenic and is translocated via an ATP binding cassette (ABC) 

transporter complex (the aat apparatus). Both these genes have been used for identification 

and classification of EAEC isolates, but it has been noted that dispersin gene (aap) can be 

detected in DAEC as well as nonpathogenic E.coli (Monteiro et al., 2009). 

2.5.1 Diagnosis of Enteroaggregative Escherichia coli infections 

Isolated putative EAEC can be identified by sub-culturing them into Luria broth at 37oC 

followed by infection of semi confluent Hep-2 cells for three hours to demonstrate 

pathognomic aggregates; the hallmark “stacked-brick” appearance, where the bacilli are 

elongated and sometimes line up in a single layer on the surface of the cell (Dudley et al., 

2006). Molecular based detection of EAEC targets aggR gene (Huang et al., 2007).  

2.6 Diffusely adherent Escherichia coli infections 

Diffusely adherent E. coli strains form DA pattern on cultured epithelial HEp-2 as well as 

HeLa cells as a heterogeneous group that were previously subdivided into two subclasses: 

DAEC expressing Afa/Dr adhesins (Afa/Dr DAEC) and DAEC not expressing Afa/Dr 

adhesins (Servin, 2005). The subclass of DAEC that does not express Afa/Dr adhesins has 
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recently evolved with the main member of this subclass; the diarrhea-associated DAEC 

expressing the aidA gene, encoding an adhesin involved in diffuse adherence (AIDA-I), 

belonging to the newly defined second class of EPEC designated atypical EPEC (aEPEC) 

since it is eae positive (Benz & Schmidt, 1989; Servin, 2014). It has been shown that the 

relative risk of diarrhea associated with DAEC increases with age of children from 18 

months to 5 years. The intestinal carriage of these strains has also been reported to be 

widespread in older children and adults. The consequences of this persistence are 

unknown, but several observations have suggested a potential role in the development of 

chronic inflammatory intestinal disease (Le Bouguénec & Servin, 2006). 

2.6.1 Diagnosis of Diffusely adherent Escherichia coli infections 

Adhesion assay is used to detect DAEC based on mannose resistant diffuse aggregation 

on cultured HEp-2 or HeLa cells where they form patterns that can be classified as 

localized, diffuse or aggregate but this method is not specific for Afa/Dr DAEC since 

other pathogenic E. coli strains may show similar patterns (Servin, 2005). Diffuse 

clustering assay (DCA) is used to detect HeLa cell receptors on Afa/Dr DAEC (Goluszko 

et al., 2001). Colony hybridization assays employing DNA probes like daaC which is a 

30bp Pst1 fragment of a plasmid pSS1 has been widely used for detection of Afa/Dr 

DAEC (Snelling et al., 2009). PCR assays that amplify afa gene fragments have proved 

to be more promising since they are highly specific (Le Bouguénec et al., 2001; Servin, 

2014). 

2.7 Enterohaemorrhagic Escherichia coli infections 

Enterohaemorrhagic E. coli is a subset of the Shiga-toxigenic E. coli (STEC) group of 

pathogens which cause disease that ranges from mild watery diarrhea to hemorrhagic 

colitis (HC) and in extreme scenarios hemolytic uremic syndrome (HUS). Infection by 

STEC is considered to be the most common foodborne zoonotic pathogen causing various 

disease conditions in both animals and humans with ruminants especially cattle as the 

most important source of infection primary reservoir (Perera et al., 2015). In humans, 
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STEC infections may primarily result from consumption of undercooked beef, raw milk, 

meat and dairy products, vegetables, unpasteurized fruit juices, and water contaminated 

with fecal material from infected persons or animals (Neher et al., 2016). The virulent 

strains of STEC are associated with one or more types of stx (stx1, stx2 or stx2 variants) 

as well as the property of producing intimin, which is required for attachment effacement 

lesions encoded by eae gene (Blanco et al., 2004; Perera et al., 2015). There are, at least, 

200 serotypes of E. coli that are capable of producing sxts but E. coli O157:H7 is the most 

well-known (Neher et al., 2016). Infections caused by EHEC O157:H7 have been 

associated with contaminated meat products but cases also appear in relation to 

contaminated fresh produce. Ruminants, most notably cattle, are the primary host for 

EHEC O157:H7, which they colonize asymptomatically at the recto-anal junction using 

the LEE-encoded T3SS. Virulence factors in EHEC O157:H7 includes a T3SS and its set 

of associated effector proteins, the stx toxin and the pO157 plasmid (Croxen & Finlay, 

2010; Croxen et al., 2013). Variety of serotypes and virulence factors found among STEC 

strains, are responsible for varying severity of disease. stx1-containing STEC can lead to 

HUS while the presence of stx2 is associated with more severe human disease than that of 

stx1. Ingested STEC are able to survive low pH of the stomach (Hong et al., 2012) and 

colonize the intestinal mucosa by attachment to epithelial cells mediated by adhesins 

secreted by this pathogen (Farfan & Torres, 2012). Production of stx; virulence factors by 

STEC is responsible for HUS. Due to its clinical significance and ability to cause disease, 

it has been the subject of many investigations. stx are classified into two types, stx1 and 

stx2, with stx1 having 3 subtypes (a, c, and d), and stx2 having 7 (a to g) (Scheutz et al., 

2012). This pathotype can carry a single variant, stx1 or stx2, both stx1 and stx2, or a 

combination of stx2 subtypes (e.g., stx2a and stx2c). Both stx1- and stx2-containing STEC 

can lead to HUS; however, stx2 is more often associated with severe disease (Croxen et 

al., 2013). Both stx1 and stx2 are encoded on prophages that are integrated into the 

chromosome. Shiga toxin-carrying phages can become lytic during bacterial stress, and it 

is believed that stx1/stx2 is released from lysed bacterial cells during the lytic cycle of the 

phage (Berger et al., 2019; Herold et al., 2004). Use of antibiotics to treat STEC infections 

has become contentious due to the stimulation of the lytic cycle and concomitant toxin 
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release through the bacterial SOS response. Studies have shown that fluoroquinolones 

increase stx2 production in STEC O157:H7 and that sub-inhibitory concentrations of 

fluoroquinolones and trimethoprim induce the lytic cycle, while other antibiotics such as 

azithromycin have no effect (McGannon et al., 2010). The genes; stx binds to Gb3 on the 

surface of endothelial cells (Betz et al., 2012) and is internalized and trafficked through 

the retrograde pathway from the Golgi apparatus and endoplasmic reticulum (ER) and 

eventually to the host cell cytoplasm. The A subunit is an ribonucleic acid (RNA)-

glycosidase that removes an adenine from  28 subunit (28S) ribosomal ribonucleic acid 

(rRNA), thereby inhibiting protein synthesis and causing cell death. Mechanisms of stx 

transport from the intestinal lumen across the epithelium are unknown but it is 

hypothesized that STEC-induced inflammation can provide the toxin an opportunity to 

breach the epithelial barrier (Schüller, 2011) or cross the intestinal epithelium through 

microfold cells (M cells) and survive in macrophages, thereby release stx into the 

bloodstream, where it can target other organs (Etienne-Mesmin et al., 2011). A cluster 

encoding the cytolethal distending toxin (cdtABC) is found in STEC O157:H7 and less 

frequently in SFO157:NM isolates. Once delivered into the cell, the enzymatically active 

CdtB is thought to trigger cell arrest by damaging host DNA and may contribute to HUS. 

Hemolysin (hlyA) produced by EHEC  is a pore-forming toxin that lyses sheep 

erythrocytes. The role of Ehx (ehx) in virulence is unclear but it has been shown to be 

cytotoxic to endothelial cells and may contribute to the development of HUS but it is 

inactivated by EspP (Brockmeyer et al., 2011). Several auto transporters are also found in 

STEC but serine protease EspP is the best studied. A multifunctional protease; EspP 

cleaves human coagulation factor V, pepsin A, complement and EHEC hemolysin, 

inactivating its hemolytic activity. All EspP are not secreted except EspPα and EspPγ 

which are active. Strains of STEC O157:H7 that possess EspPα are most commonly 

associated with severe disease (Brockmeyer et al., 2007; Orth et al., 2010). Strains of 

EHEC also possess LEE genes that encode an effector protein called translocated-intimin 

receptor (TIR) that is secreted by the T3SS and translocated through EspA filaments into 

host epithelial cells. TIR localizes in the epithelial cell’s cytoplasmic membrane to serve 
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as a receptor for a LEE-encoded bacterial outer membrane adhesin, called intimin 

produced by all EHEC strains and related A/E pathogens (Stevens & Frankel, 2014). 

2.7.1 Diagnosis of Enterohaemorrhagic Escherichia coli infections 

Stool samples inoculated onto sorbitol-MacConkey (SMAC) plates and incubated at 37oC 

in ambient air produce clear colonies within 24 hours. These colonies can then be 

identified by O157:H7 antisera. Enzyme immunoassay (EIA) kits can be used to identify 

STEC based on detection of either Stx1 or Stx2 toxin(s) on the putative isolates (Gould, 

2012; Gould et al., 2009). However, stx can be lost from in vivo isolates of  O26, 

SFO157:NM, O103, and O145 serotypes (Gould, 2012; Gould et al., 2009), necessitating 

inclusion of a secondary target like intimin (sfp gene) to differentiate O157:H7 from 

SFO157:NM (Bielaszewska et al., 2007, 2008). Serotyping methods have been developed 

to detect STEC using microarrays, matrix-assisted laser desorption ionization–time of 

flight mass spectrometry (MALDI-TOF MS), and microbeads (Lin et al., 2011; Norman 

et al., 2012). Quantitative PCR (qPCR) panels have also been developed to look at 

multiple genes, such as rfbE (O157 antigen), stx, eae, ehx, fliC, and O-antigen genes to 

profile for certain STEC isolates (Gonzales et al., 2011). These methods are generally not 

approved for diagnosis from human samples but may be useful for epidemiological and 

outbreak studies by public health laboratories. 

2.8 Zoonotic Escherichia coli infections 

Escherichia coli, a Gram-negative bacteria is  a known gut commensal of  majority of 

warm blooded animals including NHPs (Bailey & Mansfield, 2010; Clayton et al., 2014; 

Lugano et al., 2018). This diverse organism not only plays a role in the maintenance of 

gut health by helping to prevent the establishment of pathogenic bacteria in the 

gastrointestinal tract (GIT), but can also exist in a number of pathogenic forms that cause 

diarrheal illness, life threatening intestinal and extraintestinal infections worldwide 

(Aminshahidi et al., 2017; Gomes et al., 2016; Vieira et al., 2016).  



15 

 

Strains of E. coli that produce cytotoxic necrotizing factors (CNFs) are associated with 

intestinal and extra-intestinal infections in both humans and animals (Kaper et al., 2004). 

There are three types of CNFs; CNF1, CNF2 and CNF3 with a mechanism of action that 

involve activation of Rho GTPases, a family of molecular switches with multiple cellular 

functions, resulting in reorganization of the actin cytoskeleton. Some virulence factors 

including CNF1, α-haemolysin and P fimbriae are located in the same pathogenicity 

island. Strains of E. coli producing CNF1 are mostly incriminated to cause urinary tract 

infections in humans. These strains have been isolated from healthy and diseased animal 

species including weaned pigs and dogs with diarrhoea; cats  and dogs with urinary tract 

infections; ferrets with diarrhoea and extra-intestinal infections; and birds and mink with 

suspected colibacillosis and coli-septicaemia (Martin et al., 2009). Domestic ruminants 

particularly are the main asymptomatic carriers of E. coli O157: H7 with virulence factors 

like stx and eae making them potential human pathogens but these bovine pathogens 

possess fewer virulence factors than human counterparts. However, bovine strains are 

capable of tolerating adverse conditions than those from human. STEC also colonize gut 

of sheep and goats among other small stocks. Sporadic isolation of EHEC indicates 

transmission from humans to wildlife through the environment. For example, there are 

reports of EHEC infection in deers and gulls (Ferens & Hovde, 2011). EPEC has been 

isolated as a sole opportunistic pathogen from infant macaques with acquired 

immunodeficiency syndrome (AIDS) and in co-infection with one or several other 

enteroparasites. EPEC infections are most common among neonate and infant macaques 

just like in humans where infants below two years are most susceptible (Mansfield et al., 

2001).  

Five E. coli pathotypes; EPEC, ETEC, EAEC, EHEC and EIEC have been isolated from 

NHPs but there is no established association with diarrhoea (Clayton et al., 2014; 

Kaloppaswamy et al., 2014). It is certainly plausible that these pathotypes could play a 

role in the intermittent diarrhea observed in primate population. It is likely that EPEC 

exhibits different effects on different animals, with some animals acting as asymptomatic 

carriers and others susceptible to diarrhea (Bailey & Mansfield, 2010). Haemorrhagic 
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diarrhea has been observed in colonies of marmosets. Both EIEC and EHEC have been 

isolated from cymologus macaques and rhesus macaques implying that they are 

susceptible to these pathogens (Clayton et al., 2014). Pathognomic attachment and 

effacement lesions have been demonstrated in Macaca radiata that were experimentally 

infected with EHEC O157:H7 (Kang et al., 2001). The role of pathogenic E. coli in 

producing gastrointestinal disease in NHPs has not been fully established and the limited 

available studies have only reported the infection in marmosets, macaques, gorillas, De 

brazzas, tamarins, lemurs, white spider monkeys among others but not in baboons 

(Clayton et al., 2014; Kang et al., 2001; Kolappaswamy et al., 2014). However, their 

presence in these NHPs constitute a potential source of DEC that can be transmitted to 

humans causing a major public health problem. 

2.9 Antimicrobial resistance in Escherichia coli 

Despite being a gut microbiota, E. coli is also an essential indicator for dissemination of 

antimicrobial resistance since it is equally exposed to antibiotics used for treatment of 

other infections (Stedt et al., 2014). Presence of E. coli in livestock that are closely in 

contact with humans plus their interactions with the wild animal populations including 

NHPs through shared habitats increases the risk of spreading antimicrobial resistance to a 

vast range of susceptible hosts even when wildlife has not been exposed to antimicrobial 

therapies (Guenther et al., 2011; Stedt et al., 2014; Wallensten et al., 2011). In addition, 

forest fragmentation has increased the interactions between humans and other animals that 

shed E. coli from their GITs and can acquire the bacterium from any of the available hosts 

whenever they come into contact with their feces (Goldberg et al., 2008; Rwego et al., 

2008). Both bacterial pathogens and commensals in the infected sites of animals including 

humans are exposed to same groups of antimicrobial agents during chemotherapy 

(Tadesse et al., 2017). Antimicrobial agents act via different mechanisms like inhibiting 

synthesis of bacterial cell wall, proteins and nucleic acids synthesis thereby exerting their 

bacteriocidal or bacteriostatic effects (Kapoor et al., 2017). For instance, β-lactam 

antibiotics that consist of penicillin, cephalosporins, monobactams and carbapenems 

inhibit bacterial cell wall biosynthesis (Bush & Bradford, 2016). The antibiotic pressure 
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on the target bacterial pathogens and normal microbial flora including E. coli results in 

development of resistance against these antimicrobial agents and high risk of subsequent 

transfer (Barlow, 2009). Resistance against β-lactam antibiotics may arise through 

mutations of target penicillin binding proteins (PBPs), alteration of cell porins to prevent 

drug from accessing the target site, active efflux of the drug via energy-dependent pumps 

and  hydrolysis of β-lactam ring via the activity of β-lactamases (Zervosen et al., 2012)). 

However, the most common mechanism of antibiotics resistance employed by clinically 

important Gram-negative bacteria is hydrolysis of β-lactam antimicrobial agents by β-

lactamases (Bush & Jacoby, 2010). Most genera of Gram negative bacteria are observed 

to possess naturally occurring chromosomally mediated β-lactamase that appears to have 

evolved from PBP due to their sequence homology (Öztürk et al., 2015). ESBLs are 

plasmid-borne enzymes with the ability to hydrolyze oxyimino-cephalosporins and 

monobactams but not cephamycins and carbapenems (Bradford, 2001). However, ESBLs 

are susceptible to β-lactam inhibitors including clavulanic acid, sulbactam, tazobactam 

and avibactam (Perez et al., 2016).  The ESBLs genes, blaTEM, blaSHV and blaCTX-M belong 

to Ambler Class A and are commonly found in Gram negative bacteria including E. coli 

(Bonomo, 2017). The first  blaTEM, blaTEM-1 was found in E. coli isolated from a patient 

called Temoneira from Athens, Greece and has spread to other bacteria species via 

plasmids and transposons (Bradford, 2001). There are currently more than 200 blaTEM-

type β-lactamases and are responsible for approximately 90% ampicillin resistance 

observed in E. coli (ur Rahman et al., 2018). The first blaSHV was discovered in 1970 from 

E. coli and denoted as sulfhydryl variable (Liakopoulos et al., 2016). Most Gram negative 

bacteria including clinical E. coli isolates harbour blaSHV β-lactamases are encoded in self-

transmissible plasmids (ur Rahman et al., 2018).  Substitution of amino acids has given 

rise to 189 blaSHV allelic variants with varying ability to hydrolyze third generation 

cephalosporins, monobactams and carbapenems (Liakopoulos et al., 2016). Over the past 

two decades, E. coli carrying blaCTX-M type ESBL with ability to hydrolyze cefotaxime 

has been increasingly isolated from nosocomial and community acquired infections (Smet 

et al., 2010). In addition, E. coli strains isolated from healthy humans, livestock, 

companion animals, food products and sewage have been shown to harbor blaCTX-M 
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ESBLs (Franz et al., 2015; Smet et al., 2010). It has been established that blaCTX-M gene 

is the most promiscuous and predominant ESBL (ur Rahman et al., 2018). In most cases, 

ESBLs are carried on plasmids and other mobile genetic elements that possess genes that 

encode for resistance against other antimicrobial agents like aminoglycosides and 

sulphonamides (Bush & Jacoby, 2010) making them highly transmissible. Presence of 

antimicrobial resistance determinants in E. coli from olive baboons and/or other NHPs 

could be a major threat to its rapid spread to humans that get into contact due to settlement 

and other anthropogenic activities (Goldberg et al., 2008; Lugano et al., 2018) with 

subsequent development and/or dissemination of community acquired antimicrobial 

resistance. Carriage of ESBLs by both pathogenic and non-pathogenic E. coli is well 

documented in humans (Bryce et al., 2016; Franiczek et al., 2012), but in NHPs which 

are phylogenetically related to humans, the data is limited. These groups of animals are 

known to share same habitat and thus the possibility for a bidirectional transmission of 

antibiotic resistant bacteria including E. coli. This can result in emergence or re-

emergence of infections that are difficult to treat due to limited and/or inaccessible 

treatment options especially in low income countries leading to high morbidity and 

mortality (Ghaderpour et al., 2015; Planta, 2007). There is limited data on antimicrobial 

susceptibility patterns of E. coli among NHPs and this study provides a window of 

determining the burden of the problem. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study area 

This study was conducted at the Institute of Primate Research (IPR) that is located within 

the expansive Oloolua forest near Karen, 20 Km from Nairobi city in Kenya. It ethically 

utilizes NHPs including olive baboons for biomedical research as guided by national and 

international guidelines (National Research Council, 2011). This institution is a World 

Health Organization (WHO) collaborating centre with its laboratory animal facility 

accredited by Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC). Mpala ranch is a 48,000 acre property ate the heart of Laikipia County 

northwest of Mt. Kenya. This is a home to more than 25 wild mammalian species 

including baboons that closely interact with pastoral communities and their livestock 

making it an ideal model for studying various aspects of transmission of zoonoses (Mpala 

Research Center, 2020). 

3.2 Study design 

This was a cross-sectional study that involved screening two groups of olive baboons. One 

group comprised of captive baboons housed within IPR’s animal enclosures. Captive 

population was made up of 62 olive baboons housed in a group cage where they interact 

socially. The other group designated as wild comprised an equal number of free-ranging 

baboons within Mpala ranch located in Laikipia County.  

3.3 Sample size calculation 

Sample size was calculated using the formulae shown below (Hajian-Tilaki, 2011; Kadam 

& Bhalerao, 2010): 

n=  2(Zα+Z1-β)
2ṕ(1- ṕ) 

    (p1-p2)2 
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Where: 

n = Minimum samples required during the study 

Zα= 1.96  

Z1-β=0.842 

P1= 0.6 prevalence of DEC in rhesus and cymolgus macaques (Kolappaswamy et al., 

2014) 

P2 = 0.32 prevalence of diarrhea in captive marmosets (Carvalho et al., 2003) 

ṕ =  p1+p2 

   2 

The sample size (N) required was: 

N= 2(1.96+0.842)2 0.46x0.54 

 (0.60-0.32)2 

 = 50 animals per group 

3.4 Study Animals 

This study was conducted using a total of 124 healthy adult baboons divided into two 

equal groups of 62; captive and wild olive baboons. The first group consisted of captive 

baboons that were housed in standard animal facility within IPR where the animals are 

provided with adequate enrichment in social group enclosures that minimizes stress. All 

NHPs are fed on commercial monkey chow (Unga Farm Care Limited, Nairobi Kenya) 

supplemented with fruits, vegetables and water ad libitum. The second group comprised 

of free ranging wild baboon troops found within Mpalla ranch conservancy located at 

Laikipia County, Kenya.  

3.5 Sample collection and processing 

3.5.1 Stool sample collection 

Samples of both captive and wild baboons were collected from freshly voided feces using 

sterile cotton tipped applicator swab moistened in normal saline, with care to collect from 
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the top of the sample to avoid ground contamination. These stool samples were clearly 

labeled with the appropriate animal identity (e.g. Pan 001). All fecal swabs were 

aseptically inoculated into Stuart transport media (Oxoid, Basingstoke UK), placed on ice, 

transported to the laboratory and subsequently processed. 

3.5.2 Bacterial isolation and identification 

Each stool sample was inoculated into MacConkey broth (Oxoid, Basingstoke UK) and 

incubated for six hours. A loopful was then sub-cultured onto Xylose Lysine 

Deoxycholate (XLD) (Oxoid, Basingstoke UK) and MacConkey agar (Oxoid, 

Basingstoke UK) plates that were incubated at 35oC in ambient air for 24 hours. Sorbitol 

MacConkey agar (Oxoid, Basingstoke UK) plates were included in order to effectively 

isolate E. coli O157:H7. Inoculated plates were examined for lactose fermentation in order 

to classify the isolates as lactose fermenters and/or non-lactose fermenters. All Lactose 

fermenters were subjected to Gram staining in order to study their morphology and Gram 

reaction. Colonies that appeared as Gram negative rods were sub-cultured onto 

MacConkey agar (Oxoid, Basingstoke UK) and incubated at 37oC for 24 hours in order to 

obtain pure isolates that were used for biochemical tests to identify them. Colonies of pure 

lactose fermenters isolates that were less than 24 hours old were suspended in 5 ml sterile 

physiological saline to form a turbidity of 0.5 McFarland. This suspension was aseptically 

inoculated into twenty biochemical test tubes of analytical profile index 20 

Enterobacteriaceae (API 20E, BioMeriux® SA, Marcy l’Etoile, France) and incubated at 

36oC for 24 hours according to manufacturer’s instructions while a colony of the same 

isolate was tested for production of oxidase enzyme (Oxoid, Basingstoke UK) to complete 

the API 20E profile. After 24 hours inoculated test strips were examined and the results 

recorded on the coupons supplied with the kits. Isolated Gram negative rods were 

identified using APIWEB standalone software (Ali et al., 2012). Isolated E. coli were 

suspended in Tryptone soy (Oxoid, Basingstoke UK) broth mixed with glycerol and stored 

at -20oC awaiting molecular characterization and subsequent antimicrobial sensitivity 

testing. 



22 

 

3.5.3 DNA isolation 

In order to prepare E. coli template DNA, the isolates were inoculated into Tryptone soy 

broth and incubated at 37oC for 24 hours. After 24 hours, 2 ml of Tryptone soy broth 

isolate cultures were centrifuged at 10,000 rpm. The supernatant was discarded into a 

container containing 5000 ppm chlorine disinfectant leaving a pellet rich in E. coli isolate 

at the bottom of the tube  that was re-suspended  in 0.5 ml of sterile nuclease free water 

then boiled  at 100oC for 10 minutes in a heat block followed by spinning the lysate at 

10000 rpm for 5 minutes to obtain template DNA in the supernatant which was carefully 

transferred to another tube (Bölin et al., 2006; Xia et al., 2010) and stored at -20oC. 

3.5.4 Characterization of E. coli pathotypes 

In order to characterize E. coli pathotypes, isolated DNA of the presumptive E. coli 

isolates were amplified in 0.2ml PCR reaction tubes containing10 µl 5xPCR buffers, 

0.2mM dNTPs mixture, 2.5 U Taq DNA polymerase, 0.15 µmol of each primer 

and1µltemplate DNA to make a total reaction volume of 20µl. DNA templates from 

known E. coli pathotypes were used as positive controls during the assay. Primers listed 

in Table 3-1 were used in this study to target elt and est for ETEC, eae and bfpA for EPEC, 

CVD432 for EAEC, eae, stx1&2 (VTcom) for EHEC/STEC, ipaH for EIEC as a multiplex 

assay. Thermocycling condition for all reactions involved initial denaturation step of 2 

minutes at 95oC followed by 30 cycles of 15 seconds denaturation at 95oC, 8seconds 

annealing at 52oC and 10seconds extension at 72oC together with a final extension for 2 

minutes at 72oC (Tobias & Vutukuru, 2012). Amplified PCR products were subjected to 

electrophoresis on 1.5% agarose gel then visualized using ultra-violet (UV) 

transilluminator documentation system (UVP Bio-Doc It™ Imaging System, Upland, CA, 

USA). This involved mixing 10 µl of PCR products including the positive and negative 

controls with the loading dye, loading carefully into the wells of pre-cast 1.5% agarose 

gel placed in an electrophoresis tank.  A 100 bp molecular marker (Thermo Scientific, 

Lithuania, UK)  was put in wells on both ends of the agarose gels in order to determine 

the size of the amplicons. The electrophoresis tank was connected to the power supply 
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and allowed to run for one hour. The agarose gel was then removed from the tank carefully 

and placed on a UV transilluminator for visualization. Amplicons sizes were then 

determined and interpreted against reference primers (Table 3.1) with the aid of a 100 bp 

molecular marker (Thermo Scientific, Lithuania, UK). 
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Table 3.1: Primers used for identification of E. coli Pathotypes 

Oligonucleotide sequence (5’-3’) Target gene Product 

size (bp) 

Reference  

ETEC  ACGGCGTTACTATCCTCTC 

            TGGTCTCGGTCAGATATGTG 

Elt 273 (Tobias & Vutukuru, 

2012) 

ETEC  TCTTTCCCCTCTTTTAGTCAG 

            ACAGGCAGGATTACAACAAAG 

estA1 166 (Rodas et al., 2009) 

ETEC  TTCACCTTTCCCTCAGGATG 

            CTATTCATGCTTTCAGGACCA 

estA2-4 120 (Rodas et al., 2009) 

EPEC  GGAAGTCAAATTCATGGGGGTAT 

            GGAATCAGACGCAGACTGGTAGT 

bfpA 300 (Vidal, et al, 2004) 

EPEC  TCAATGCAGTTCCGTTATCAGTT 

           GTAAAGTCCGTTACCCCAACCTG 

eae 482 (Vidal, et al, 2004) 

EHEC   GAGCGAAATAATTTATATGTG 

             TGATGATGGCAATTCAGTAT 

stx1+ stx2 518 (Tobias & Vutukuru, 

2012) 

EIEC GTTCCTTGACCGCCTTTCCGATACCGTC 

           GCCGGTCAGCCACCCTCTGAGAGTAC 

ipaH 600 (Aranda et al., 2007) 

DAEC  CTGGCGAAAGACTGTATCAT 

             AAATGTATAGAAATCCGCTGTT 

pCVD432 630 (Rodas et al., 2009) 
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3.5.5 Antimicrobial susceptibility testing 

All E. coli isolates from the two groups of baboons were screened for antimicrobial 

resistance using Kirby-Bauer agar disk diffusion method on Mueller-Hinton agar (Becton 

Dickinson and Co. Sparks NV, USA) according to Clinical and Laboratory Standards 

Institute (CLSI) recommendations (CLSI, 2015). All antimicrobial disks were sourced 

from Becton Dickinson and Co. Disks containing the following commonly used 

antimicrobial agents were used:  Ampicillin (AM) 10 µg, Chloramphenicol (C) 30 µg, 

Tetracycline (TE) 30 µg, Gentamycin (GM) 10 µg, Streptomycin (S) 10 µg, 

Trimethoprim/Sulphomethoxazole (SXT) 25 µg, Norfloxacin (NOR) 10 µg, 

Ciprofloxacin (CIP) 5 µg, Cefaclor (CEC) 30 µg, Ceftriazone (CRO) 30 µg, Cefotaxime 

(CTX) 30 µg, Cefuroxime (CXM) 30 µg, Cefepime (FEP) 30 µg, and 

Amoxicillin/Clavulanic acid (AMC) 20/10 µg. E. coli ATCC 25922 was used as the 

quality reference strain. Diameters of zones of inhibition were measured in millimeters 

and interpreted against CLSI standards (CLSI, 2015). 

3.5.6 Detection of ESBLs’ phenotypes 

Phenotypic screening of ESBLs was performed by double disk synergy test followed by 

genotypic detection using polymerase chain reaction (PCR). Four disks of antimicrobial 

agents; CAZ 30 µg, FEP 30 µg, CTX 30 µg and CRO 30 µg (Liofilchem s.r.l Zona 

Industriale, 64026, Roseto degli Abruzzi (Te) Italy) were placed onto isolated E. coli 

inoculum on Mueller-Hinton agar (Becton Dickinson and Co. Sparks NV, USA) to 

surround a centrally positioned AMC 30 µg (Liofilchem s.r.l. Zona Industriale, 64026, 

Roseto degli Abruzzi (Te) Italy) 30 mm apart from each cephalosporin. These plates were 

incubated for 24 hours then examined for enhanced zone(s) of inhibition between AMC 

30 µg in the middle and any of the four cephalosporins. Enhanced zone of inhibition 

indicated synergistic activity and production of ESBL. E. coli isolates that were positive 

for double disk synergy test were further tested against Ceftazidime/Clavulanic acid 

(CAL) 40 µg and CAZ 30 µg alone for confirmation. The strains that had a zone of 
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inhibition around CAL acid which exceeded that of CAZ alone by 5 mm were considered 

to produce ESBL enzymes (Ahmed et al., 2013). 

3.5.7 Detection of ESBL genotypes 

Genotypic detection of ESBL was conducted by PCR that targeted three putative genes; 

blaTEM (β-lactamase Temoniera), blaCTX-M (β-lactamase cefotaximases) and blaSHV (β-

lactamase sulfhydryl variable) (Table 3.2). PCR for detecting each gene was conducted 

using 5 µl of E. coli DNA template (section 3.5.3), 1 µl of each 10 pM primer (Integrated 

DNA Technologies Inc., Illinois, USA), 12.5 µl DreamTaq PCR mastermix 2x (Thermo 

Scientific, Lithuania, UK) then topped up with nuclease free water to obtain a final 

reaction volume of 25 µl (Lim et al., 2009; Rezai et al., 2015). All the reactions were 

performed in a thermocycler (SimpliAmp™ Thermocycler, AppliedBiosystems, 

ThermoFisher Scientific, Singapore) pre-set at conditions described by Oliver et al (2002) 

and Pagani et al (2003). Detection of blaTEM and blaSHV required initial denaturation for 5 

min at 96oC followed by 35 cycles of 1 min denaturation at 96oC, 1 min annealing at 58oC 

and 1 min extension at 72oC with a final extension for 10 min at 72oC.Thermocycling 

conditions for detection of blaCTX-M consisted of initial denaturation for 7 min at 94oC, 35 

cycles 50 sec denaturation at 94oC, annealing for 40 sec at 50oC and extension for 1 min 

at 72oC with a final extension for 5 min at 72oC. Klebsiella pneumoniae ATCC 700603 

was used as a positive control while E. coli ATCC 25922 was the non-ESBL producing 

control in the entire experiment. Amplified PCR products were subjected to 

electrophoresis on 1.5% agarose gel then visualized using transilluminator (UVP Bio-Doc 

It™ Imaging System, Upland, CA, USA). Amplicons sizes were then determined and 

interpreted against reference primers (Table 3.2) with the aid of a 100 bp molecular marker 

(Thermo Scientific, Lithuania, UK). 

  



27 

 

Table 3.2: Primers used for detection of ESBL resistant genes 

Oligonucleotide sequence (5’-3’) Target gene Product 

Size (bp) 

Reference 

ATGAGTATTCAACATTTCCG 

CTGACAGTTACCAATGCTTA 

blaTEM 867 (Oliver et al., 2002) 

GGTTATGCGTTATATTCGCC 

TTAGCGTTGCCAGTGCTC 

blaSHV 867 (Oliver et al., 2002) 

ATGTGCAGYACCAGTAARGT 

TGGGTRAARTARGTSACCAGA 

blaCTX-M 593 (Pagani et al., 2003) 

3.6 Ethical clearance 

This study was reviewed and approved by the IPR’s Scientific and Ethical Review 

committee (ISERC). This involved rigorous scrutiny of all protocols to ensure that animals 

are handled in compliance with recommended animal care and use practices. Use of stool 

samples in studies that utilize laboratory animals is considered non-invasive and therefore 

advocated whenever possible since it does not subject the subjects to unnecessary stress. 

This project was assigned an approval reference ISERC (ISERC/12/15) after completion 

of the review process.  
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CHAPTER FOUR 

RESULTS 

4.1 Identification of Escherichia coli pathotypes 

A total of 124 E. coli were isolated from both captive (n=62) and wild (n=62) baboons. 

Four pathotypes; ETEC, EPEC, EHEC and EIEC were prevalent in the captive 15 (24.2%) 

population of baboons (Table 4.1). On the other hand three pathotypes; EPEC, EIEC and 

ETEC were isolated from 18 (29.0%) wild baboons (Table 4.1). Carriage of ETEC was 

higher among captive 9 (14.5%) baboons compared to the wild. Wild baboons were 

observed to harbour more EPEC 14 (22.6%) than the captive animals (p<0.05; Appendix 

IV). However, EAEC and DAEC were not isolated from stool samples from both groups 

of animals. 

Table 4.1: E. coli pathotypes isolated from captive and wild olive baboons 

Pathotype Number (%) of pathotypes isolated 

 Captive (n*=62) Wild (n*=62) 

Enterotoxigenic E. coli 9 (14.5%) 1 (1.6%) 

Enteropathogenic E. coli 3 (4.5%) 14 (22.6%) 

Enterohaemorrhagic E. coli 2 (3.2%) 0 

Enteroinvasive E. coli 1 (1.6%) 3 (4.8%) 

Enteroaggregative E. coli  0  0 

Diffuse enteroaggregative E. coli  0 0 

*n=number of olive baboons that were sampled from each group 
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Isolates of E. coli  are characterized by fermentation of lactose on XLD agar plates 

cultures. Colonies of lactose fermenter appear yellow in colour on XLD agar plates (Fig. 

4.1). 

 

Figure 4.1: Xylose lysine deoxycholate agar plate showing colonies of lactose 

fermenters. 

Yellow colonies indicate lactose fermenters a characteristic associated with E. coli. This 

was used for presumptive identification of isolates from baboon fecal samples. All yellow 

colonies were presumptively considered as E. coli and subjected to subsequent 

identification tests (Gram staining and biochemical tests). 
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Further identification of E. coli isolates was accomplished using Gram stain. Isolated E. 

coli appeared as pink rod-shaped organisms (Fig. 4.2) when stained with Gram stain.  

 

Figure 4.2: Microscopy of  a Gram stained slide. 

A Gram stained slide showing Gram negative rods; a characteristic of E. coli (×1000 

magnification) isolated from baboon fecal samples.  

Confirmation of E. coli isolates was accomplished subjecting them to 20 biochemical tests 

that demonstrated production of lactose permease depicted by positive O-nitrophenyl-p-

galactopyranoside (ONPG), decarboxylation of lysine (LDC) and ornithine (ODC) but not 

arginine (ADH) by E. coli (Appendix III). Strains of E. coli do not utilize citrate (CIT), 

produce Hydrogen sulfide (H2S) or urease enzyme (URE). It deaminates (TDA) and 

decomposes (IND) tryptophan but does not ferment sugars with production of acetoin 
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(VP). It does not liquify gelatin (GEL) but ferments all sugars in the API 20E strip except 

inositol (INO) and amygdalin (AMY). All isolates with these biochemical tests 

characteristics were identified as E. coli (Fig. 4.3). 

 

Figure 4.3: API 20E results positive for E. coli isolates. 

4.2 Antimicrobial susceptibility testing  

Antimicrobial susceptibility testing was undertaken on all E. coli isolates by disk diffusion 

method where fourteen antibiotics were used. The isolates from both groups of animals 

were prevalently resistant to Ampicillin (32.3%) captive and (35.5%) wild baboons. 

Isolates from feces of captive baboons showed higher prevalence of antimicrobial 

resistance against SXT (37.1%), AMC (25.8%) and S (11.7%) than those from their wild 

counterparts (p<0.05; Appendix V). All E. coli isolates from both groups of animals were 

susceptible to CIP whereas they were resistant to the other antimicrobial agents used in 

this study (Fig. 4.4).  
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Figure 4.4: Antimicrobial susceptibility patterns of E. coli isolates from captive and 

wild baboons 

4.3 Detection of Genes Encoding extended spectrum β-lactamases 

A total of 124 E. coli isolates, 62 each from captive and wild baboons were tested for three 

ESBL genes. The prevalence of the genes was marginally higher in E. coli isolated from 

wild 11 (17.7%) than the captive 9 (14.5%) baboons (p>0.05; Appendix VI). However, 

the isolates harbouring ESBL genes; blaCTX-M 5 (8.1%) and blaTEM 3 (4.8%) were more 

dominant among captive baboons population (Fig. 4.6). On the other hand presence of 

blaSHV gene was higher in E. coli isolated from wild baboons 7 (11.3%) compared to the 

captive 1 (1.6%) population (Fig. 4.6). 
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Figure 4.5: ESBLs genotypes in E. coli isolates from captive and wild baboons 

Phenotypic determination of ESBL genes was accomplished by double disk synergy test 

(Fig. 4.5). The illustrated ‘ghost’ zones produced between third generation cephalosporins 

and amoxycillin/clavulanic acid, a feature consistent with ESBL production by bacteria. 

Isolated E. coli showing enhanced zones of inhibition between amoxycillin/clavulanic 

acid (AMC) (at the centre) and cefepime (FEP), ceftriazone (CRO) and ceftazidime 

(CAZ). 
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Figure 4.6: Demonstration of ESBLs Phenotypic screening of E. coli isolates 
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Visualization of amplicons sizes corresponding to gene that code for blaCTX-M on agarose 

gel after electrophoresis as illustrated in Fig. 4.7. 

 

Figure 4.7: Agarose gel electrophoresis showing blaCTX-M 

M-100bp molecular marker, PC-positive control (K. pneumoniae ATCC 700603), 1-4-

samples with positive amplification, 5-9-samples with negative amplification and NC-

Negative control (E. coli ATCC 29522). 
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Demonstration of amplicons sizes corresponding to gene that code for blaTEM generated 

from agarose gel electrophoresis of PCR products as demonstrated in Fig. 4.8. 

 

Figure 4.8: Agarose gel electrophoresis showing blaTEM amplification 

M-100bp molecular marker, PC-positive control (K. pneumoniae ATCC 700603), 1-5-

samples with positive amplification, 6-8-samples with negative amplification and NC-

Negative control (E. coli ATCC 25922). 
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Agarose electrophoresis demonstrating PCR products corresponding to genes that code 

for blaSHV detected from isolated E. coli  is illustrated in Fig 4.9. 

 

                

Figure 4.9: Agarose gel electrophoresis showing blaSHV amplification 

M-100bp molecular marker, PC-positive control (K. pneumoniae ATCC 700603), 1-4- 

samples with positive amplification, 5-8-samples with negative amplification and NC-

Negative control (E. coli ATCC 25922).  
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CHAPTER FIVE 

DISCUSSION 

5.1 Pathotypes of Escherichia coli isolates from captive and wild olive baboons 

This study established presence of four E. coli pathotypes; ETEC, EPEC, EIEC and EHEC 

in faecal samples of the two groups of baboons. The observed difference in the prevalence  

where three pathotypes namely; ETEC, EPEC and EIEC were detected in 29.0% of wild 

olive baboons fecal samples whereas four pathotypes; ETEC, EPEC, EIEC and EHEC 

were isolated from 24.2% of the captive group could be attributed to variations in the 

environmental settings where these populations were sampled from. A study undertaken 

by Kaloppaswamy et al (2014) established that fecal samples from NHPs including De 

Brazzas, spider monkeys, white-faced sakis, lemurs and tamarins were prevalently 

contaminated with either of the three pathotypes; EPEC, EHEC and EIEC detected in this 

study. However, in another study aimed at determining gastrointestinal bacterial 

transmission among humans, mountain gorillas, and livestock, it was established that 

interaction of these animal species increased zoonotic transmission (Rwego et al., 2008). 

The captive baboons are socially housed within IPR with stringent husbandry conditions 

where they routinely closely interact with animal health care personnel and thus there is a 

high possibility of transmission of these pathotypes during cleaning, feeding and other 

experimental procedures (Muriithi et al, 2015). Routine introduction of environment 

enrichment material could also be an important source of infection among the captive 

baboons. On the other hand, wild baboons consisted of free-ranging troops that are 

frequently in close contact with humans, livestock and other feral animals within the 

region that increase their risk of transmission including E. coli pathotypes (Goldberg et 

al., 2008). The four pathotypes; ETEC, EPEC, EIEC and EHEC that were detected in fecal 

samples from the study baboons have also been demonstrated in fecal samples collected 

from different healthy NHPs in a zoo setting (Clayton et al., 2014). This implies that NHPs 

can be an important source of DEC infection to humans who come into contact with their 

fecal materials by virtue of occupation or anthropogenic activities. However, fatal 
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outbreaks of diarrhoea caused by EIEC have been reported in rhesus macaques and 

another one by EHEC in cynomolgus macaques (Kaloppaswamy et al., 2014) but not in 

baboons. Presence of these microbes in baboons and other NHPs in captivity and wild is 

not uncommon since generally it has been proven difficult to eliminate most infectious 

pathogens from these laboratory animals even when different approaches that work in 

other species have been employed (Bailey & Mansfield 2010). This is partly attributed to 

the fact that unlike most laboratory animals, NHPs require to be socially housed in highly 

enriched enclosures similar to their natural habitat for both welfare and breeding purposes 

(National Research Council, 2011) and this promotes introduction and transmission of 

pathogens. Neither EAEC nor DAEC were detected in all the baboon faecal samples 

analyzed, an these two have hardly been previously found in NHP gut E. coli isolates 

except the autotransporter enterotoxin gene; pet of EAEC that is responsible for secretory 

diarrhoea (Clayton et al., 2014; Navarro-Garcia & Elias, 2011).  

However, the outbreaks of diarrhea associated with EPEC producing characteristic A/E 

lesions has been reported in 47% of New world monkeys (Carvalho et al., 2003). In 

addition, opportunistic EPEC infection has been observed among simian 

immunodeficiency virus infected rhesus macaques (Mansfield et al., 2001). Atypical 

EPEC O98 have been isolated from 2.6% golden snub-nosed monkeys in China that had 

diarrhea (Qi et al., 2017). These pathotypes have been demonstrated to cause fatal 

outbreaks in humans (Clements et al., 2012; Croxen et al., 2013; Vieira et al., 2016) thus 

presenting them as important zoonoses. Infections with DEC pathotypes is mostly 

associated with childhood diarrhoea where moderate to severe cases are reported globally 

(Thakur et al., 2018). The importance of DEC in development of paediatric diarrhoea 

cannot be overstated in developing countries (Saka et al., 2019) including Kenya where 

cases are increasingly being reported (Shah et al., 2016). Animals including NHPs have 

been reported as reservoirs for aEPEC (Delahoy et al., 2018). None of the animals from 

both groups used in this study showed signs of diarrhea suggesting carriage of these 

pathotypes by olive baboons which means that human interaction with their fecal matter 

could result in zoonotic transmission of DEC. 
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5.2 Antimicrobial susceptibility profiles of Escherichia coli isolated from captive 

and wild olive baboons. 

This study demonstrated that E. coli isolates from both captive and wild olive baboons 

were resistant to all fourteen antimicrobial agents that we used except CIP. High 

prevalence of antimicrobial resistance against AM (32.3%; 35.5%), TE (25.8%; 25.8%) 

and STX (37.1%; 17.7%) observed in E. coli isolates from both captive and wild baboons 

could be attributed to direct or indirect exposure to antimicrobial agents (Aminov, 2009; 

Davies & Davies, 2010). Higher prevalence of E. coli resistant to SXT (37.1%), AMC 

(25.8%) and S (11.3%) among captive baboons was observed compared to those from the 

wild group (p<0.05) could be as a result of antibiotic pressure due to chemotherapy during 

routine husbandry procedures (Norris et al., 2019; Prestinaci et al., 2015). The observed 

higher prevalence of resistance against four cephalosporins including CXM (27.4%), CTX 

(18.3%), CRO (12.9%) and CEC (6.5%) by E. coli  isolates from wild baboons compared 

to the captive could be attributed to exposure of bacteria to anthropogenically 

contaminants that provoke them to develop mechanisms of resisting activity to 

antimicrobial agents like non-specific efflux (Davies & Davies, 2010). Proximity of wild 

baboons as they raid crops (Hill, 2000; Wallace & Hill, 2012) and also due to human 

animal conflicts in search for arable lands, poaching, logging among others are vehicles 

for transmitting antibiotic resistant microbes to the feral settings (Goldberg et al., 2008). 

These results are consistent with the findings of a previous study that was conducted on 

animals not previously exposed to antimicrobial chemotherapy (Muriithi et al., 2015). A 

study conducted on free-ranging yellow baboon troops from Amboseli National Park in 

Kenya revealed high prevalence of antimicrobial resistance against Tetracycline (94.1%), 

Kanamycin (70.6%), Ampicillin (47.1%) and Cephalothin (17.6%) but third generation 

cephalosporins and ESBLs were not included (Rolland et al., 1985). This high prevalence 

of antibiotic resistance observed in baboons from Amboseli National Park was attributed 

to foraging on food wastes and other refuse that could be implicated as the source of 

antibiotic resistant non-pathogenic bacteria including E. coli (Rolland et al., 1985). This 

also explains our findings since the wild baboons sampled in this study closely interact 
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with humans and different types of wastes within Mpala ranch. This could be reinforced 

by the fact that vehicles of transmission of E. coli comprise of human and NHPs fecal 

material in areas where there is close contact during human activities in the animals 

infested areas and contaminated water bodies (Goldberg et al., 2008). Transmission of 

bacteria including antimicrobial resistant E. coli, between different susceptible hosts like 

humans, livestock, NHPs and other wild animals due to forest fragmentation (Chapman 

et al., 2005) increases risk of infections whose interventions are scarcely available or 

lacking. Infections by antibiotics resistant organisms are associated with poor clinical 

outcomes including prolonged hospitalization, economic pressure and increased mortality 

(Thaden et al., 2017). The interspecies transmission is accelerated by the ecologic overlap 

created by the fragments and anthropogenic activities in the affected regions with these 

resistant microbes spreading to the community settings (Rwego et al, 2008).   

Public health problem of antimicrobial resistance is emphasized by the high prevalence 

against SXT (80.6-95.2%), AM (77.4-95.2%), TE (57.1-81.0%), C (14.3-35.7%), GM 

(6.4%) and CIP (3.2%) that has been reported among pathogenic E. coli isolated from 

humans from different parts of Kenya (Sang et al., 2012). Close interaction between 

animals including baboons and humans in conflict increases the risk of transmission of 

microbes like E. coli that have been subjected to constant antimicrobial pressure through 

livestock farming, poor human waste disposal and polluted environment (Martinez, 2009). 

In addition to being part of the essential gut microbial flora, E. coli is responsible for 

paediatric septicaemia and community-acquired sepsis in sub-Saharan Africa (Williams 

et al., 2018) adding to the burden of morbidity which when coupled with antimicrobial 

resistance as revealed in this study deteriorates to a grave public health problem. 

5.3 Selected β-lactamase genes detected in Escherichia coli isolates from captive and 

wild olive baboons. 

This study established that E. coli isolated from both groups of baboons harboured all the 

three ESBL resistance genes under investigation namely blaCTX-M, blaTEM and blaSHV. 

However, the observed difference in prevalence where the three ESBLs  were detected in 
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17.7% of wild baboons compared to 14.5% of the captive group could be ascribed to 

ubiquity of resistance genes that can be easily acquired from contaminated soils 

(Prestinaci et al., 2015) in feral free-ranging environment in Mpala ranch compared to 

exposure to resistant bacteria in potentially contaminated enrichment materials in animal 

enclosures (Mansfield et al., 2001). Higher prevalence of blaSHV that was detected in 

11.3% of wild baboons and 1.6% of the captive animals could be as a result of presence 

of antibiotics resistance genes in environmental bacteria with determinants that are readily 

transmissible by horizontal gene transfer to resident E, coli in these hosts (Martínez et al., 

2007; Martinez, 2009). Detection of 8.1% and 4.8% E. coli harbouring blaCTX-M and 

blaTEM respectively in captive baboons compared to 3.2% of each gene among the wild 

counterparts could be attributed to antibiotic selective pressure during routine 

chemotherapy and acquisition of resistance determinants (Martinez, 2009). Antimicrobial 

resistance that was observed among the wild population could be attributed to habitat 

contamination by human or domestic animal waste containing antibiotic residues or gut 

microbial flora harboring resistance genes (Doi et al., 2010). Presence of ESBL genes 

detected in E. coli isolates from the two groups of animals could be attributed to the 

conjugational transfer of plasmid-mediated ESBLs occurs efficiently in the intestinal tract, 

where enteric rods, often act as a reservoir of self-transmissible resistance markers that 

can be exchanged between species of the Enterobacteriaceae family (Franiczek et al., 

2012).  This phenomenon of gene transfer is on the premise that ESBLs can be borne on 

plasmids and mobile genetic elements makes them highly transmissible horizontally 

resulting into ‘super’ pathogens (Doi et al., 2010).  This has posed AMR as a significant 

threat to the prevention and treatment of bacterial infections (Bernabé et al., 2017; Tadesse 

et al., 2017). Previous studies have reported that commensals from healthy individuals 

including E. coli are reservoirs for highly transmissible antibiotics’ resistance genetic 

material that can be readily acquired by pathogens (Okeke et al., 2007). Genes that encode 

for ESBLs that include blaCTX-M, blaTEM and blaSHV have been detected in E. coli isolated 

from clinical specimens in different parts of the world with reported upsurge of MDR that 

complicate morbidity caused by this bacterium (Lim et al., 2009). Carriage of ESBL genes 

has been detected in E. coli isolates from human clinical specimens at both hospital and 



43 

 

community settings (Lim et al., 2009; Bajaj et al., 2016). Successful management of 

infections caused by such resistant strains requires an understanding of the diversity of β-

lactamases, their unambiguous detection, and molecular mechanisms underlying their 

expression and spread with regard to the most relevant information about individual 

bacterial species (Bajaj et al., 2016).   
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This study established the following conclusions: 

Four pathotypes; ETEC, EPEC, EIEC and EHEC were identified in the two groups of 

baboons. Three pathotypes; ETEC, EPEC and EIEC were detected in fecal samples 

collected from 18 (29.0%) of wild olive baboons. Four pathotypes; ETEC, EPEC, EIEC 

and EHEC were isolated from fecal samples collected from 15 (24.2%) of the captive 

olive baboons. The most prevalent pathotype among the captive baboons was ETEC 9 

(14.5%) whereas prevalence of EPEC 14 (22.6%) was highest in the wild population. 

Multidrug resistant E. coli isolates were detected from both captive and wild olive 

baboons. However, E. coli isolated from captive baboons displayed high resistance to SXT 

(37.1%), AMC (25.8%) and S (11.7%) compared to those from the wild.  

All the three ESBL genes under investigation in this study including blaTEM, blaSHV and 

blaCTX-M were detected in E. coli isolated from both captive and wild olive baboons. This 

therefore renders them a serious potential threat in the transmission of these genes among 

human, domestic and wild animal communities surrounding their habitats. 

6.2 Recommendations 

• There is need to sensitize laboratory animal handlers of the potential of zoonotic 

transmission of DEC and ESBLs from baboons.  

• Awareness campaigns aimed at creating awareness of health risks associated with 

human-animal interactions should be strengthened. 

• Further investigation of variants of the three ESBL genes under investigation in this 

study. 
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• Molecular characterization of additional genes encoding AMR should be undertaken 

on E. coli and other enteric pathogens of human health concern. 
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Appendix III: API 20E test description 

Tests Substrates Quantity Enzymes/ 

Reactions  

Results 

ONPG ortho-nitrophenyl–D-

galactopyranoside 

(ONPG) isopropyl-

thiogalactopyranoside 

(IPTG) 

0.2 mg 

 

β-

galactosidase  

Negative Positive 

Colorless   Yellow (1) 

ADH  L-Arginine   2.0 mg  Arginine 

Dihydrolase  

Yellow  Red /Orange 

(2)  

LDC  L-Lysine   2.0 mg  Lysine 

Decarboxylase  

Yellow  Red/Orange 

(2) 

ODC  L-Ornithine   2.0 mg  Ornithine 

Decarboxylase  

Yellow  Red /Orange 

(2) 

CIT Tri-Sodium  citrate  0.8 mg Citrate 

Utilization 

Pale Green / 

Yellow  

Blue-

Green/Blue (3 

H2S  Sodium  thiosulfate  80.0μg H2S 

production  

Colorless / 

Greyish  

Black Deposit 

/ Thin Line 

URE  Urea   0.8 mg Urease  Yellow Red/Orange 

(2) 

TDA L-Tryptophane   0.4 mg Tryptophane  

deaminase 

Add one drop of TDA 

(Fe(Cl2) and read 

immediately 

Yellow  brown-red 

IND L-Tryptophane    0.2 mg Indole  

production 

Add James reagent (1 drop) / 

Immediately 
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Colourless, 

Yellow/pale 

green 

Pink  

VP Creatine   

Sodium pyruvate 

0.9 mg 

2.0 mg 

Acetoin  

production 

VP1 (1 drop) + VP2 (1 drop) 

/ 10 min 

Colorless/pale 

pink   

pink / red 

(5) 

GEL Kohn's charcoal 

(gelatin-bovine origin) 

0.6 mg Gelatinase  no diffusion 

of black 

pigment 

diffusion of 

black 

pigment 

GLU  Glucose   2.0 mg  Fermentation / 

oxidation (4) 

blue / blue-

green  

Yellow / 

greyish 

yellow 

 

MAN  Mannitol  2.0 mg 

INO  Inositol   2.0 mg 

SOR  Sorbitol    2.0 mg 

RHA  Rhamnose    2.0 mg 

SAC  Sucrose    2.0 mg 

MEL  Melibiose   2.0 mg 

AMY  Amygdalin   0.57mg 

ARA  Arabinose   2.0 mg 

1) A very pale yellow should also be considered positive.  

2) An orange color after 36-48 hours incubation must be considered negative.  

3) Reading made in the cupule (aerobic).  

4) Fermentation begins in the lower portion of the tubes, oxidation begins in the cupules. 

5) A slightly pink color after 10 minutes should be considered negative. 
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Appendix IV: Statistical comparison of E. coli pathotypes isolated from captive and 

wild baboons 

Pathotype Number (%) of pathotype isolated 

 Captive (n*=62) Wild (n*=62) 

Enterotoxigenic E. coli 9 (14.5%) 1 (1.6%) 

Enteropathogenic E. coli 3 (4.5%) 14 (22.6%) 

Enterohaemorrhagic E. coli 2 (3.2%) 0 

Enteroinvasive E. coli 1 (1.6%) 3 (4.8%) 

Enteroaggregative E. coli  0  0 

Diffuse enteroaggregative E. coli  0 0 

*n=number of olive baboons that were sampled from each group 

X2 test, df 3=8.16906 

X2 test, (CI=95%); df 3= 7.81 

P<0.05 
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Appendix V: Statistical comparison Antimicrobial susceptibility pattern of E. coli 

from captive and wild baboons  

Antimicrobial agent Number (%) of resistant isolates 

 Captive (n*=62) Wild (n*=62) 

Trimethoprim  23 (37.1%) 11 (17.7%) 

Ampicillin  20 (32.3%) 22 (35.5%) 

Amoxicillin/Clavulanic acid 16 (25.8%) 4 (6.5%) 

Tetracycline  16 (25.8%) 16 (25.8%) 

Streptomycin  7 (11.3%) 1 (1.6%) 

Cefotaxime  7 (11.3%) 11 (18.3%) 

Cefuroxime  5 (8.1%) 17 (27.4%) 

Chloramphenicol  3 (4.8%) 1 (1.6%) 

Ceftriazone  3 (4.8%) 8 (12.9%) 

Cefepime  3 (4.8%) 3 (4.8%) 

Gentamycin  1 (1.6%) 1 (1.6%) 

Norfloxacin  1 (1.6%) 1 (1.6%) 

Cefaclor  1 (1.6%) 4 (6.5%) 

Ciprofloxacin  0 (0.0%) 0 (0.0%) 
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*n=number of olive baboon that were sampled. P<0.05 

X2 test, df 13=42.42 

X2 test, (CI=95%); df 13= 22.36 

P<0.05 
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Appendix VI: Statistical comparison Selected ESBL genes detected in E. coli from 

captive and wild baboons 

ESBL gene Number (%) of selected resistance genes 

 Captive (n*=62) Wild (n*=62) 

TEM 3 (4.8%) 2 (3.2%) 

CTX 5 (8.1%) 2 (3.2%) 

SHV 1 (1.6%) 7 (11.3%) 

 

X2 test, df 2=5.844156 

X2 test, (CI=95%); df 2= 5.991 

P>0.05 
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Appendix VII: Directions to Mpala Ranch from Nanyuki 

 


