Study to determine presence of resistance to second-line anti-

tuberculosis drugs in Kenyan isolates.

Violet Asiko Ongaya

A thesis submitted in partial fulfillment for the degree of Master of Science Degree in Medical Mycobacteriology in the Jomo Kenyatta University of Agriculture and Technology.

2009

DECLARATION

This thesis is my original work and has not been presented for a degree in any other University.

Signature......Date.....Date.....

This thesis has been submitted for examination with our approval as University Supervisors:

1. Signature......Date.....

Dr. Willie Githui KEMRI, Kenya.

2. Signature......Date.....

Dr. Hellen Meme KEMRI, Kenya.

3. Signature..... Date.....

Dr. Ciira Kiiyukia JKUAT, Kenya.

DEDICATION

I dedicate this research project to my parents Givan Saya and Margaret Saya and to my sisters and brother; it's been a tough journey, but with your constant reassurance, I have come this far.

ACKNOWLEDGMENT

There are a number of wonderful people who have contributed in countless ways in helping me to complete this work:

First I thank God for without His unseen yet ever present hand in this work, the outcome would not have been possible. My gratitude to my family, who encouraged me during this period of study and for financial support. I will always appreciate your love and support. My sincere thanks to my supervisors: Dr. Willie Githui, Dr. Hellen Meme and Dr. Ciira Kiiyukia for their tireless efforts in advising, guiding and supervising this work.

I am also grateful to Dr. W. Githui and Dr. H. Meme for allowing me to use the stored MTB isolates from their previous studies and also for material support. Many thanks to Mr. Ernest Juma for his technical expertise, constant assistance, advice and encouragement through out the study. I am grateful to the entire Centre for Respiratory Diseases Research (CRDR) laboratory personnel, Mike Kagwamba, Joseph Mutunga, and Michael Musili for their constant assistance.

My sincere gratitude to Mr. Lawrence Muthami and Moses Mwangi for their statistical assistance. Thanks to the ITROMID and JKUAT staff for timely updates with the necessary information and provision of documents relevant to this project. Thanks to Dr. Frank Waweru, Doris Mweni, my classmates and friends for their encouragement and support through out this period. Finally, I would like to thank everyone else who inspired me to work hard.

TABLE OF CONTENTS

DECLARATIO	DN	
DEDICATION.	[
ACKNOWLED	DGEMENTS	IV
TABLE OF CO	ONTENTS	V
LIST OF TABL	LES	X
LIST OF FIGU	JRES	XI
LIST OF APPE	ENDICES	XII
LIST OF ABBR	REVIATIONS AND ACRONYMS	XIII
ABSTRACT		XV
CHAPTER ONE		1
INTRODUCTION		1
1.1. Back	kground	1
1.1.1. Pat	thogenesis of Mycobacterium tuberculosis	1
1.1.2. Epi	bidemiology of Mycobacteria	2
1.2 JUSTIFICA	ATION	5
1.3 HYPOTHES	SIS	6
1.3.1. Nu	ull hypothesis	6
1.3.2. Alt	ternative hypothesis	6
1.4 OBJECTIV	'ES	6
1.4.1. Ge	eneral objective	6

1.4.2. Specific objectives	7
CHAPTER TWO	8
LITERATURE REVIEW	8
2.1. Laboratory diagnosis and identification of Mycobacterium	
tuberculosis	8
2.2. Main species of the genus Mycobacterium	11
2.3. Infections caused by Mycobacteria species	11
2.3.1. Pulmonary and extrapulmonary tuberculosis	13
2.3.1.1. Pulmonary tuberculosis	13
2.3.1.2. Extrapulmonary tuberculosis	13
2.3.2. Treatment of TB	14
2.4. Mechanism of antimicrobial drug resistance	14
2.4.1. Drug resistant TB	15
2.4.1.1. Treatment of drug resistant TB	16
2.4.2. Causes of drug-resistant TB	15
2.4.3. Epidemiology of drug-resistant TB	19
2.4.4 Drug-resistant TB in Kenya	20
2.5. Anti-TB drugs	21
2.5.1 First line anti-TB drugs	23
2.5.1.1. Streptomycin	23
2.5.1.2. Isoniazid	23
2.5.1.3. Rifampicin	24

2.5.1.4. Ethambutol	24
2.5.1.5. Pyrazinamide	24
2.5.2. Second-line anti-TB drugs	25
2.5.2.1. Aminoglycosides	25
2.5.2.2. Polypeptides	26
2.5.2.3. Fluoroquinolones	26
2.5.2.4. Ethionamide	27
2.5.2.5. Cycloserine	27
2.5.2.6. Para-aminosalicylic acid	27
2.6. Drug susceptibility testing for Mycobacterium	31
2.6.1. The proportion method	32
2.6.2. The resistance ratio method	32
2.6.3. The absolute concentration method	33
2.6.4. The BACTEC 460® radiometric method	33
CHAPTER THREE	34
MATERIALS AND METHODS	34
3.1 MATERIALS	34
3.1.1. Reagents	34
3.1.2. Equipment	34
3.1.3. Bacteriological media	35
3.1.4. Reference MTB strain	35
3.1.5. Laboratory safety of the investigator	35

3.2. Study Design
3.2.1. Determination of the minimum sample size
3.3 METHODS
3.3.1. Samples
3.3.2. Inclusion criteria
3.3.3 Exclusion criteria
3.2.4. Subculture of isolates
3.2.5. Preparation of McFarland nephelometer
3.2.6. Establishment of Standard Operating Procedures (SOPs)39
3.2.7. Drug susceptibility testing using second-line drugs40
3.2.7.1. Preparation of drug containing media41
3.2.7.2. Drug dilutions41
3.2.7.3. Making bacterial suspension and inoculation41
3.2.7.4. Incubation and reading42
3.2.7.5. Interpretation of results
3.2.8. Quality control
3.3.9. Ethical considerations
3.3.10 Data management and analysis43
CHAPTER FOUR
RESULTS45
4.1. Subcultured isolates
4.2. Drug susceptibility testing of SLDs45

4.2.1. Susceptibility profile to SLDs for the 78 first-line resistant	
MTB isolates	51
4.2.1.1. Susceptibility pattern of the 25 MDR-TB	
isolates to SLDs	52
4.2.2. Susceptibility profile of the 138 first-line sensitive MTB	
isolates to SLDs	53
4.2.3. Comparison of first-line resistance to second-line drugs	
resistance	53
CHAPTER FIVE	58
DISCUSSION	58
CHAPTER SIX	65
CONCLUSION AND RECOMMENDATIONS	65
6.1. Conclusion	65
6.2. Recommendations	66
REFERENCES	67
APPENDICES.	77

LIST OF TABLES

Table 2.1:	Differentiation between <i>M. tuberculosis</i> and Non-Tuberculous	
	Mycobacterium (NTM)10	
Table 2.2:	Causes of inadequate anti-TB treatment18	
Table 2.3:	Method of grouping anti-TB drugs22	
Table 2.4.1:	Characteristics of the main first-line anti-TB drugs29	
Table 2.4.2:	Characteristics of the main second-line anti-TB drug30	
Table 4.1:	Susceptibility profile of the 216 MTB isolates to second-line	
	drugs47	
Table 4.2:	Numbers of isolates fully resistant, intermediate resistant and	
	sensitive to SLDs48	
Table 4.3:	Resistant levels with the different second-line drugs49	
Table 4.4:	Susceptibility profile of the 78 first-line resistant MTB isolates51	
Table 4.5:	Susceptibility profile of the 25 MDR–TB isolates52	
Table 4.6:	Susceptibility profile of the 138 first-line sensitive MTB isolates53	
Table 4.7:	First-line resistant isolates resistant to gatifloxacin54	
Table 4.8:	First-line resistant isolates resistant to kanamycin55	
Table 4.9:	First-line resistant isolates resistant to ethionamide56	
Table 4.10:	First-line resistant isolates resistant to cycloserine	

LIST OF FIGURES

Figure 4.1:	Susceptibility percentages of the 216 isolates	
	SLDs4	6
Figure 4.2:	Percentages of the 78 first-line resistant and the 138 first-line	
	sensitive isolates	.50

LIST OF APPENDICES

Appendix 1:	Preparation of Lowenstein Jensen (LJ) media	77
Appendix 2:	Preparation of LJ medium with gatifloxacin	80
Appendix 3:	Preparation of LJ media with kanamycin	83
Appendix 4:	Preparation of LJ media with ethionamide	84
Appendix 5:	Final concentrations of ethionamide in LJ media	86
Appendix 6:	Preparation of LJ media with cycloserine	87
Appendix 7:	Final concentrations of cycloserine in LJ media	.88

LIST OF ABBREVIATIONS AND ACRONYMS

AFB	acid-fast bacilli
BaCl ₂	Barium chloride
CDC	United States Center for Disease Control and Prevention
CFU	colony forming units
CRDR	Centre for Respiratory Diseases Research
DNA	Deoxyribonucleic Acid
DOT	Directly Observed Therapy
DST	Drug Susceptibility Testing
GLC	Gas Liquid Chromatography
HPLC	High Performance Liquid Chromatography
ITROMID	Institute of Tropical Medicine and Infectious Diseases
IUATLD	International Union Against Tuberculosis and Lung Disease
JKUAT	Jomo Kenyatta University of Agriculture and Technology
KEMRI	Kenya Medical Research Institute
LJ	Lowenstein-Jensen
Μ	Molar concentration
MAC	Mycobacterium avium complex
MDR-TB	Multi Drug Resistant Tuberculosis
MGIT	Mycobacterial Growth Indicator Tube
MOTT	Mycobacteria other than tubercle bacilli

МТВ	Mycobacterium tuberculosis
N/A	Not Applicable
NTM	Non-tuberculous mycobacteria
PCR	Polymerase Chain Reaction
PNB	p-nitro benzoic acid
RNA	Ribonucleic acid
RR	Resistant Ratio
SLDs	Second-line drugs
ТСН	Thiophen-2-carboxylic acid hydrazide
ТВ	Tuberculosis
WHO	World Health Organization
XDR	Extensively Drug Resistant
ZN	Ziehl-Neelsen

ABSTRACT

Tuberculosis (TB) is yet far from being controlled. Despite the fact that several reasons could be attributed to this, a significant contributing factor is the development of resistance to the currently available drugs due to the successful adaptation of the pathogen to these drugs. Second-line anti-TB drugs are being used for treatment of Multi-Drug Resistant TB (MDR-TB) patients.

The purpose of this study was to investigate the presence of drug resistant strains of *Mycobacterium tuberculosis* (MTB) to second-line anti-TB drugs (SLDs) in first-line predetermined drug susceptibility isolates obtained from different studies carried out at the Centre for Respiratory Diseases Research (CRDR) between 2002 and 2007.

A total of 216 MTB isolates including 78 first-line drug resistant isolates to individual and combined drugs and 138 first-line drugs susceptible isolates to all drugs were selected for this study. Of the 78 first-line resistant isolates, 25 isolates were MDR-TB strains. Resistant ratio and proportion methods were used to test. All the isolates were tested for susceptibility to four second-line drugs including cycloserine, gatifloxacin, ethionamide and kanamycin. Using S.P.S.S. computer data analysis programme, analysis of data was done using chi-square to compare resistance and susceptibility among the drugs, and to compare resistance and susceptibility between the first-line susceptible and resistant isolates to second-line anti-TB drugs.

Of the 216 first-line isolates tested, 96.3% were sensitive, 2.2% were fully resistant and 1.5% had intermediate resistance. Of the 78 isolates tested, 94.9% were sensitive, 4.2% were fully resistant and 1% were intermediate resistant. Of the 138 isolates tested, 97.1% were sensitive, 1.1% were fully resistant and 1.8% were intermediate resistant. Drug resistance to second-line anti-TB drugs was not statistically associated with previous firstline anti-TB drugs resistance, although the resistance level of second-line anti-TB drugs in the first-line resistant isolates was higher than in the first-line sensitive isolates.

Resistance of MTB to second-line anti-TB drugs is present in Kenya. There was resistance to all the four second-line anti-TB drugs tested in this study, in both first-line resistant and sensitive isolates. There was no XDR-TB strain isolated.

As resistant MTB increases in Kenya further studies are needed to evaluate secondline DST techniques and establish an appropriate one within the national policies. Since the samples used in this study may not be a representation of the current national status of drug resistance to second-line anti-TB drugs, a national surveillance is important to establish the prevalence of second-line anti-TB drugs resistance in the country.